Problem Given a random variable \(X \sim \mathcal{N}(\mu,\sigma^2)\), find a transformation \(f: X \rightarrow Y\), such that \(Y \sim Uniform(a,b)\). Solution Let \(\Phi_X(\cdot)\) the cumulative distribution function of \(X\). \[ \begin{eqnarray} Z \equiv \frac{X - \mu}{\sigma};\quad Z &\sim& \mathcal{N}(0;1) \\ \Phi_{Z}\left(\frac{X-\mu}{\sigma}\right) &\sim& Uniform(0;1) \\ (b-a) \Phi_{Z}\left(\frac{X-\mu}{\sigma}\right) &\sim& Uniform(0,b-a) \\ a + (b-a) \Phi_{Z}\left(\frac{X-\mu}{\sigma}\right) &\sim& Uniform(a,b) \end{eqnarray} \] In conclusion, \(Y \equiv a + (b-a) \Phi_X\left(\frac{X-\mu}{\sigma}\right)\). Computational demonstration norm2unif = function(x, mu = 0, sigma = 1, min = 0, max = 1, use.

Continue reading

Author's picture

Trang Tran


Student

USA